A brief introduction to Logic – part I ### A Brief Introduction to Logic - Outline - Brief historical notes on logic - Propositional Logic :Syntax - Propositional Logic :Semantics - Satisfiability and validity - Modeling with Propositional logic - Normal forms - Deductive proofs and resolution ## Historical view - Philosophical Logic - 500 BC to 19th Century - Symbolic Logic - Mid to late 19th Century - Mathematical Logic - Late 19th to mid 20th Century - Logic in Computer Science ### Philosophical Logic - 500 B.C 19th Century - Logic dealt with arguments in the natural language used by humans. - Example - All men are mortal. - Socrates is a man - Therefore, Socrates is mortal. ### Philosophical Logic - Natural languages are very ambiguous. - Eric does not believe that Mary can pass any test. - ...does not believe that she can pass *some* test, or - ...does not believe that she can pass *all* tests - I only borrowed your car. - And not 'borrowed and used', or - And not 'car and coat' - Tom hates Jim and he likes Mary. - Tom likes Mary, or - Jim likes Mary - It led to many paradoxes. - "This sentence is a lie." (The Liar's Paradox) - Sophism generally refers to a particularly confusing, illogical and/or insincere argument used by someone to make a point, or, perhaps, not to make a point. - Sophistry refers to [...] rhetoric that is designed to appeal to the listener on grounds other than the strict logical cogency of the statements being made. ### The Sophist's Paradox - A Sophist is sued for his tuition by the school that educated him. He argues that he must win, since, if he loses, the school didn't educate him well enough, and doesn't deserve the money. - The school argues that he must lose, since, if he wins, he was educated well enough, and therefore should pay for it. ### Logic in Computer Science - Logic has a profound impact on computer-science. Some examples: - Propositional logic the foundation of computers and circuitry - Databases query languages - Programming languages (e.g. prolog) - Design Validation and verification - AI (e.g. inference systems) - **...** ### Logic in Computer Science - Propositional Logic - First Order Logic - Higher Order Logic - Temporal Logic - • • ### Propositional logic - A proposition a sentence that can be either true or false. - Propositions: - x is greater than y - Noam wrote this letter ### Propositional logic: Syntax - The symbols of the language: - Propositional symbols (Prop): A, B, C,... - Connectives: - and - v or - ¬ not - \bullet \rightarrow implies - ↔ equivalent to - ⊕ xor (different than) - ⊥, ⊤ False, True - Parenthesis:(,). - Q1: how many different binary symbols can we define? - Q2: what is the minimal number of such symbols? - Grammar of well-formed propositional formulas - Formula := prop | (¬Formula) | (Formula o Formula). - ... where prop \in Prop and o is one of the binary relations - Examples of well-formed formulas: - $-(\neg A)$ - $\bullet (\neg(\neg A))$ - $(A \wedge (B \wedge C))$ - $\bullet (A \rightarrow (B \rightarrow C))$ - Correct expressions of Propositional Logic are full of unnecessary parenthesis. ■ **Abbreviations**. We write in place of $$(A \circ (B \circ (C \circ ...)))$$ ■ Thus, we write $$A \wedge B \wedge C$$, $A \rightarrow B \rightarrow C$, ... in place of $$(A \land (B \land C)), (A \rightarrow (B \rightarrow C))$$ - We omit parenthesis whenever we may restore them through operator precedence: - \neg binds more strictly than \land , \lor , and \land , \lor bind more strictly than \rightarrow , \leftrightarrow . - Thus, we write: $$\neg \neg A$$ for $(\neg (\neg A))$, $\neg A \land B$ for $((\neg A) \land B)$ $A \land B \rightarrow C$ for $((A \land B) \rightarrow C)$, ... ### Propositional Logic: Semantics - Truth tables define the semantics (=meaning) of the operators - Convention: 0 = false, 1 = true | p | q | $p \wedge q$ | $p \lor q$ | $p \rightarrow q$ | |---|---|--------------|------------|-------------------| | 0 | 0 | 0 | 0 | 1 | | 0 | 1 | 0 | 1 | 1 | | 1 | 0 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | 1 | ### **Propositional Logic: Semantics** Truth tables define the semantics (=meaning) of the operators | p | q | ¬р | $p \leftrightarrow q$ | $p \oplus q$ | |---|---|----|-----------------------|--------------| | 0 | 0 | 1 | 1 | 0 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 0 | 1 | | 1 | 1 | 0 | 1 | 0 | ### Back to Q1 - Q1: How many binary operators can we define that have different semantic definition? - A: 16 ## Assignments - Definition: A truth-values assignment, α , is an element of 2^{Prop} (i.e., $\alpha \in 2^{\text{Prop}}$). - In other words, α is a subset of the variables that are assigned true. - Equivalently, we can see α as a mapping from variables to truth values: $\alpha: \operatorname{Prop} \mapsto \{0,1\}$ • Example: α : {A \mapsto 0, B \mapsto 1,...} ### Satisfaction relation (⊨): intuition An assignment can either satisfy or not satisfy a given formula. - \bullet $\alpha \models \varphi$ means - α satisfies φ or - φ holds at α or - \bullet a is a model of ϕ - We will first see an example. - Then we will define these notions formally. ### Example • Let $$\phi = (A \lor (B \rightarrow C))$$ • Let $$\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$$ - Q: Does α satisfy ϕ ? - (in symbols: does it hold that $\alpha \models \phi$?) - A: $(0 \lor (0 \to 1)) = (0 \lor 1) = 1$ - Hence, $\alpha \vDash \phi$. Let us now formalize an evaluation process. # • ### The satisfaction relation (\models) : formalities - \models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$ - Examples: - ({a}, a \vee b) // the assignment $\alpha = \{a\}$ satisfies a \vee b - $(\{a,b\}, a \land b)$ - Alternatively: $\models \subseteq (\{0,1\}^{\text{Prop}} \times \text{Formula})$ - Examples: - (01, a \vee b) // the assignment $\alpha = \{a \mapsto 0, b \mapsto 1\}$ satisfies a \vee b - $(11, a \wedge b)$ ### The satisfaction relation (\models) : formalities - ⊨ is defined recursively: - $\alpha \models p \text{ if } \alpha (p) = \text{true}$ - $\alpha \models \neg \phi \text{ if } \alpha \not\models \phi.$ - $\alpha \models \varphi_1 \land \varphi_2$ if $\alpha \models \varphi_1$ and $\alpha \models \varphi_2$ - $\alpha \vDash \varphi_1 \lor \varphi_2 \text{ if } \alpha \vDash \varphi_1 \text{ or } \alpha \vDash \varphi_2$ - $\alpha \vDash \phi_1 \rightarrow \phi_2$ if $\alpha \vDash \phi_1$ implies $\alpha \vDash \phi_2$ - $\alpha \vDash \varphi_1 \leftrightarrow \varphi_2 \text{ if } \alpha \vDash \varphi_1 \text{ iff } \alpha \vDash \varphi_2$ ### From definition to an evaluation algorithm - Truth Evaluation Problem - Given $\varphi \in$ Formula and $\alpha \in 2^{AP(\varphi)}$, does $\alpha \models \varphi$? ``` Eval(\varphi, \alpha) { If \varphi \equiv A, return \alpha(A). If \varphi \equiv (\neg \varphi_1) return \neg \text{Eval}(\varphi_1, \alpha)) If \varphi \equiv (\varphi_1 \circ \varphi_2) return Eval(\varphi_1, \alpha) o Eval(\varphi_2, \alpha) } ``` Eval uses polynomial time and space. # • ### It doesn't give us more than what we already know... - Recall our example - Let $\phi = (A \lor (B \rightarrow C))$ - Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$ - Eval (ϕ, α) = Eval $(A, \alpha) \vee$ Eval $(B \rightarrow C, \alpha)$ = $0 \vee \text{Eval}(B, \alpha) \rightarrow \text{Eval}(C, \alpha)$ = $0 \vee (0 \rightarrow 1) = 0 \vee 1 = 1$ • Hence, $\alpha \vDash \phi$. ### We can now extend the truth table to formulas | p | q | $(p \to (q \to p))$ | $(p \land \neg p)$ | $p \lor \neg q$ | |---|---|---------------------|--------------------|-----------------| | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 1 | 0 | 0 | | 1 | 0 | 1 | 0 | 1 | | 1 | 1 | 1 | 0 | 1 | ### We can now extend the truth table to formulas | \mathbf{x}_1 | \mathbf{x}_2 | X ₃ | $x_1 \to (x_2 \to \neg x_3)$ | |----------------|----------------|-----------------------|------------------------------| | 0 | 0 | 0 | | | 0 | 0 | 1 | | | 0 | 1 | 0 | | | 0 | 1 | 1 | | | 1 | 0 | 0 | | | 1 | 0 | 1 | | | 1 | 1 | 0 | | | 1 | 1 | 1 | | ### Set of assignments - Intuition: a formula specifies a set of truth assignments. - Function models: Formula $\mapsto 2^{2^{\text{Prop}}}$ (a formula \mapsto set of satisfying assignments) - Recursive definition: - models(A) = $\{\alpha \mid \alpha(A) = 1\}, A \in Prop$ - $models(\neg \varphi_1) = 2^{Prop} models(\varphi_1)$ - $models(\varphi_1 \land \varphi_2) = models(\varphi_1) \cap models(\varphi_2)$ - $models(\varphi_1 \lor \varphi_2) = models(\varphi_1) \cup models(\varphi_2)$ - $models(\varphi_1 \rightarrow \varphi_2) = (2^{Prop} models(\varphi_1)) \cup models(\varphi_2)$ ## Example \blacksquare models (A \vee B) = { {10}, {01}, {11} } ■ This is compatible with the recursive definition: ``` models(A \lor B) = models(A) \cup models(B) = \{\{10\},\{11\}\} \cup \{\{01\},\{11\}\}\} = \{\{10\},\{01\},\{11\}\} ``` ### Theorem - Let $\varphi \in$ Formula and $\alpha \in 2^{\text{Prop}}$, then the following statements are equivalent: - 1. $\alpha \models \varphi$ - 2. $\alpha \in \text{models}(\varphi)$ ## 4 ### Only the projected assignment matters... - $AP(\varphi)$ the Atomic Propositions in φ . - Clearly $AP(\varphi) \subseteq Prop$. - Let $\alpha_1, \alpha_2 \in 2^{\text{Prop}}, \phi \in \text{Formula}$. - Lemma: if $\alpha_1|_{AP(\phi)} = \alpha_2|_{AP(\phi)}$, then $$\alpha_1 \vDash \varphi \text{ iff } \alpha_2 \vDash \varphi$$ **Projection** Corollary: $$\alpha \models \phi \text{ iff } \alpha|_{AP(\phi)} \models \phi$$ • We will assume, for simplicity, that $Prop = AP(\varphi)$. # 4 ### Extension of \vDash to sets of assignments - Let $\varphi \in Formula$ - Let T be a set of assignments, i.e., $T \subseteq 2^{2^{\text{Prop}}}$ - Definition. $$T \vDash \varphi \text{ if } T \subseteq models(\varphi)$$ • i.e., $\vDash \subseteq 2^{2^{\text{Prop}}} \times \text{Formula}$ ### Extension of \models to formulas - $\models \subset 2^{\text{Formula}} \times 2^{\text{Formula}}$ - Definition. Let Γ_1 , Γ_2 be prop. formulas. $$\begin{split} \Gamma_1 &\models \Gamma_2 \\ \text{iff models}(\Gamma_1) \subseteq \text{models}(\Gamma_2) \\ \text{iff for all } \alpha \in 2^{\text{Prop}} \\ \text{if } \alpha &\models \Gamma_1 \text{ then } \alpha \models \Gamma_2 \end{split}$$ ### **Examples:** $$x_1 \land x_2 \vDash x_1 \lor x_2$$ $$x_1 \land x_2 \vDash x_2 \lor x_3$$ # 4 ### Semantic Classification of formulas - A formula φ is called valid if models(φ) = 2^{Prop} . (also called a tautology). - A formula φ is called satisfiable if models(φ) $\neq \emptyset$. - A formula φ is called unsatisfiable if models(φ) = \emptyset . (also called a contradiction). ### Validity, satisfiability... in truth tables | p | q | $(p \to (q \to q))$ | $(p \land \neg p)$ | $p \lor \neg q$ | |---|---|---------------------|--------------------|-----------------| | 0 | 0 | 1 | 0 | 1 | | 0 | 1 | 1 | 0 | 0 | | 1 | 0 | 1 | 0 | 1 | | 1 | 1 | 1 | 0 | 1 | ### Characteristics of valid/sat. formulas... ### Lemma - A formula φ is valid iff $\neg \varphi$ is unsatisfiable - φ is satisfiable iff $\neg \varphi$ is not valid ### Look what we can do now... #### ■ We can write: $\models \phi$ when ϕ is valid $\neq \phi$ when ϕ is not valid \blacksquare $\not\models \neg \phi$ when ϕ is satisfiable $\blacksquare \vdash \neg \phi$ when ϕ is unsatisfiable $$(x_1 \land x_2) \rightarrow (x_1 \lor x_2)$$ $$(x_1 \lor x_2) \to x_1$$ $$(x_1 \wedge x_2) \wedge \neg x_1$$ ### Time for equivalences #### Here are some valid formulas: - $\blacksquare \vdash A \land 1 \leftrightarrow A$ - $\blacksquare \vdash A \land 0 \leftrightarrow 0$ - $\models \neg \neg A \leftrightarrow A$ // The double-negation rule - $\blacksquare \vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$ ### Some more (De-Morgan rules): - $\blacksquare \models \neg(A \land B) \leftrightarrow (\neg A \lor \neg B)$ - $\blacksquare \vdash \neg(A \lor B) \leftrightarrow (\neg A \land \neg B)$ ### A minimal set of binary operators - Recall the question: what is the minimal set of operators necessary? - A: Through such equivalences all Boolean operators can be written with a single operator (NAND). - Indeed, typically industrial circuits only use one type of logical gate - We'll see how two are enough: \neg and \land - Or: $\models (A \lor B) \leftrightarrow \neg (\neg A \land \neg B)$ - Implies: $\models (A \rightarrow B) \leftrightarrow (\neg A \lor B)$ - **Equivalence:** $\models (A \leftrightarrow B) \leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$ **...** ### The decision problem of formulas ■ The decision problem: Given a propositional formula ϕ , is ϕ satisfiable ? An algorithm that always terminates with a correct answer to this problem is called a decision procedure for propositional logic. ### A Brief Introduction to Logic - Outline - Brief historical notes on logic - Propositional Logic :Syntax - Propositional Logic :Semantics - Satisfiability and validity - Modeling with Propositional logic - Normal forms - Deductive proofs and resolution ### Before we solve this problem... • Q: Suppose we can solve the satisfiability problem... how can this help us? - A: There are numerous problems in the industry that are solved via the satisfiability problem of propositional logic - Logistics... - Planning... - Electronic Design Automation industry... - Cryptography... - ... (every NP-P problem...) ### Example 2: placement of wedding guests - Three chairs in a row: 1,2,3 - We need to place Aunt, Sister and Father. - Constraints: - Aunt doesn't want to sit near Father - Aunt doesn't want to sit in the left chair - Sister doesn't want to sit to the right of Father - Q: Can we satisfy these constraints? ### Example 2 (cont'd) - Denote: Aunt = 1, Sister = 2, Father = 3 - Introduce a propositional variable for each pair (person, place). - $\mathbf{x}_{ij} = \text{person } i \text{ is sited in place } j, \text{ for } 1 \leq i, j \leq 3$ - Constraints: - Aunt doesn't want to sit near Father: $((\mathbf{x}_{1,1} \lor \mathbf{x}_{1,3}) \to \neg \mathbf{x}_{3,2}) \land (\mathbf{x}_{1,2} \to (\neg \mathbf{x}_{3,1} \land \neg \mathbf{x}_{3,3}))$ - Aunt doesn't want to sit in the left chair $\neg x_{1,1}$ - Sister doesn't want to sit to the right of Father $x_{3,1} \rightarrow \neg x_{2,2} \land x_{3,2} \rightarrow \neg x_{2,3}$ ### Example 2 (cont'd) #### More constraints: Each person is placed: $$(x_{1,1} \lor x_{1,2} \lor x_{1,3}) \land (x_{2,1} \lor x_{2,2} \lor x_{2,3}) \land (x_{3,1} \lor x_{3,2} \lor x_{3,3})$$ • Or, more concisely: $\bigwedge \bigvee x_{i,j}$ $$\bigwedge_{i=1}^{3} \bigvee_{j=1}^{3} x_{i,j}$$ Not more than one person per chair: $$\bigwedge_{j=1}^{3} \bigwedge_{i=1}^{2} \bigwedge_{k=i+1}^{3} (\neg x_{i,j} \lor \neg x_{k,j})$$ Overall 9 variables, 23 conjoined constraints. ### Example 3: assignment of frequencies - n radio stations - For each assign one of k transmission frequencies, k < n. - ullet E -- set of pairs of stations, that are too close to have the same frequency. • Q: which graph problem does this remind you of? ### Example 3 (cont'd) - $x_{i,j}$ station i is assigned frequency j, for $1 \le i \le n$, $1 \le j \le k$. - Every station is assigned at least one frequency: $$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{k} x_{ij}$$ • Every station is assigned not more than one frequency: $$\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k-1} (x_{ij} \to \bigwedge_{j < t \le k} \neg x_{it})$$ • Close stations are not assigned the same frequency. For each $(i,j) \in E$, $$\bigwedge_{t=1}^{k} (x_{it} \to \neg x_{jt})$$ ### Two classes of algorithms for validity - Q: Is φ satisfiable ($/\neg \varphi$ is valid)? - Complexity: NP-Complete (the first-ever! Cook's theorem) - Two classes of algorithms for finding out: - 1. Enumeration of possible solutions (Truth tables etc). - 2. Deduction - More generally (beyond propositional logic): - Enumeration is possible only in some logics. - Deduction cannot necessarily be fully automated. ### The satisfiability problem: enumeration • Given a formula φ , is φ satisfiable? ``` Boolean SAT(\phi) { B:=false for all \alpha \in 2^{AP(\phi)} B = B \vee Eval(\phi,\alpha) end return B } ``` ■ There must be a better way to do that in practice. ### A Brief Introduction to Logic - Outline - Brief historical notes on logic - Propositional Logic :Syntax - Propositional Logic :Semantics - Satisfiability and validity - Modeling with Propositional logic - Normal forms - Deductive proofs and resolution ### Definitions... - Definition: A literal is either an atom or a negation of an atom. - Let $\phi = \neg (A \lor \neg B)$. Then: - Atoms: $AP(\phi) = \{A,B\}$ - Literals: $lit(\phi) = \{A, \neg B\}$ - Equivalent formulas can have different literals - Now lit(ϕ) = { \neg A, B} ## Def ### Definitions... - Definition: a term is a conjunction of literals - **Example:** $(A \land \neg B \land C)$ - Definition: a clause is a disjunction of literals - **Example:** $(A \lor \neg B \lor C)$ ### Negation Normal Form (NNF) ■ Definition: A formula is said to be in Negation Normal Form (NNF) if it only contains ¬, ∧ and ∨ connectives and only atoms can be negated. #### Examples: $$\bullet \quad \phi_2 = \neg A \wedge B \qquad \text{is in NNF}$$ ## • ### Converting to NNF - Every formula can be converted to NNF in linear time: - Eliminate all connectives other than \land , \lor , \neg - Use De Morgan and double-negation rules to push negations to the right - Example: $\phi = \neg(A \rightarrow \neg B)$ - Eliminate ' \rightarrow ': $\phi = \neg(\neg A \lor \neg B)$ - Push negation using De Morgan: $\phi = (\neg \neg A \land \neg \neg B)$ - Use Double negation rule: $\phi = (A \wedge B)$ ### Disjunctive Normal Form (DNF) - Definition: A formula is said to be in Disjunctive Normal Form (DNF) if it is a disjunction of terms. - In other words, it is a formula of the form $$\bigvee_{i} \left(\bigwedge_{j} l_{i,j} \right)$$ where $l_{i,j}$ is the j-th literal in the i-th term. - Examples - $\bullet = (A \land \neg B \land C) \lor (\neg A \land D) \lor (B)$ is in DNF DNF is a special case of NNF ### Converting to DNF - Every formula can be converted to DNF in exponential time and space: - Convert to NNF - Distribute disjunctions following the rule: \models A \land (B \lor C) \leftrightarrow ((A \land B) \lor (A \land C)) - Example: - Q: how many clauses would the DNF have had we started from a conjunction of n clauses? ### Satisfiability of DNF ■ Is the following DNF formula satisfiable? $(x_1 \land x_2 \land \neg x_1) \lor (x_2 \land x_1) \lor (x_2 \land \neg x_3 \land x_3)$ What is the complexity of satisfiability of DNF formulas? ### Conjunctive Normal Form (CNF) - Definition: A formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunction of clauses. - In other words, it is a formula of the form $$\bigwedge_{i} \left(\bigvee_{j} l_{i,j} \right)$$ where $l_{i,j}$ is the j-th literal in the i-th term. - Examples - $\phi = (A \lor \neg B \lor C) \land (\neg A \lor D) \land (B)$ is in CNF CNF is a special case of NNF ### Converting to CNF - Every formula can be converted to CNF: - in exponential time and space with the same set of atoms - in linear time and space if new variables are added. - In this case the original and converted formulas are "equisatisfiable". - This technique is called Tseitin's encoding. ### Converting to CNF: the exponential way ``` CNF(\phi) { case \phi is a literal: return \phi \phi is \psi_1 \wedge \psi_2: return CNF(\psi_1) \wedge CNF(\psi_2) \phi is \psi_1 \vee \psi_2: return Dist(CNF(\psi_1),CNF(\psi_2)) Dist(\psi_1,\psi_2) { case \psi_1 is \phi_{11} \wedge \phi_{12}: return Dist(\phi_{11}, \psi_2) \wedge Dist(\psi_{12}, \psi_2) \psi_2 is \phi_{21} \wedge \phi_{22}: return Dist(\psi_1, \phi_{21}) \wedge Dist(\psi_1, \phi_{22}) else: return \psi_1 \vee \psi_2 ``` ### Converting to CNF: the exponential way Consider the formula $$\phi = (\mathbf{x}_1 \wedge \mathbf{y}_1) \vee (\mathbf{x}_2 \wedge \mathbf{y}_2)$$ • $$CNF(\phi)=$$ $$(x_1 \lor x_2) \land$$ $$(x_1 \lor y_2) \land$$ $$(y_1 \lor x_2) \land$$ $$(y_1 \lor y_2)$$ - Now consider: $\phi_n = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$ - Q: How many clauses $CNF(\phi)$ returns? - A: 2ⁿ ### Converting to CNF: Tseitin's encoding - Consider the formula $\phi = (A \rightarrow (B \land C))$ - The parse tree: - Associate a new auxiliary variable with each gate. - Add constraints that define these new variables. - Finally, enforce the root node. ### Converting to CNF: Tseitin's encoding Need to satisfy: $$(a_1 \leftrightarrow (A \rightarrow a_2)) \land$$ $(a_2 \leftrightarrow (B \land C)) \land$ (a_1) • Each such constraint has a CNF representation with 3 or 4 clauses. ### Converting to CNF: Tseitin's encoding Need to satisfy: $$(a_1 \leftrightarrow (A \rightarrow a_2)) \land$$ $(a_2 \leftrightarrow (B \land C)) \land$ (a_1) - First: $(a_1 \lor A) \land (a_1 \lor \neg a_2) \land (\neg a_1 \lor \neg A \lor a_2)$ - Second: $(\neg a_2 \lor B) \land (\neg a_2 \lor C) \land (a_2 \lor \neg B \lor \neg C)$ ### Converting to CNF: Tseitin's encoding Let's go back to $\phi_n = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$ - With Tseitin's encoding we need: - n auxiliary variables $a_1,...,a_n$. - Each adds 3 constraints. - Top clause: $(a_1 \lor \cdots \lor a_n)$ - Hence, we have - 3n + 1 clauses, instead of 2^n . - 3n variables rather than 2n. #### What now? Time to solve the decision problem for propositional logic. • The only algorithm we saw so far was building truth tables. ### Two classes of algorithms for validity - Q: Is φ valid ? - Equivalently: is $\neg \varphi$ satisfiable? - Two classes of algorithm for finding out: - 1. Enumeration of possible solutions (Truth tables etc). - 2. Deduction - In general (beyond propositional logic): - Enumeration is possible only in some theories. - Deduction typically cannot be fully automated. ### The satisfiability Problem: enumeration • Given a formula φ , is φ satisfiable? ``` Boolean SAT(\varphi) { B:=false for all \alpha \in 2^{AP(\varphi)} B = B \lor Eval(\varphi, \alpha) end return B } ``` ■ NP-Complete (the first-ever! – Cook's theorem) ### A Brief Introduction to Logic - Outline - Brief historical notes on logic - Propositional Logic :Syntax - Propositional Logic :Semantics - Satisfiability and validity - Modeling with Propositional logic - Normal forms - Deductive proofs and resolution ### Deduction requires axioms and Inference rules ### Inference rules: Examples: $$rac{A ightarrow B}{A ightarrow C} rac{B ightarrow C}{A ightarrow C}$$ (trans) $A ightarrow C$ (M.P.) # • #### **Axioms** Axioms are inference rules with no antecedents, e.g., - We can turn an inference rule into an axiom if we have '→' in the logic. - So the difference between them is not sharp. ### Proofs - A proof uses a given set of inference rules and axioms. - This is called the *proof system*. - Let \mathcal{H} be a proof system. - $\Gamma \vdash_{\mathcal{H}} \varphi$ means: there is a proof of φ in system \mathcal{H} whose premises are included in Γ - \blacksquare $\vdash_{\mathcal{H}}$ is called the provability relation. ## Example • Let \mathcal{H} be the proof system comprised of the rules Trans and M.P. that we saw earlier. Does the following relation holds? $$a \rightarrow b, b \rightarrow c, c \rightarrow d, d \rightarrow e, a \vdash_{\mathcal{H}} e$$ #### Deductive proof: example $$\mathsf{a} \to \mathsf{b}$$, $\mathsf{b} \to \mathsf{c}$, $\mathsf{c} \to \mathsf{d}$, $\mathsf{d} \to \mathsf{e}$, $\mathsf{a} \vdash_{\mathcal{H}} \mathsf{e}$ - 1. $a \rightarrow b$ premise - 2. $b \rightarrow c$ premise - $3. a \rightarrow c$ 1,2,Trans - $4. c \rightarrow d$ premise - $5. d \rightarrow e$ premise - $6. c \rightarrow e$ 4,5, Trans - 7. $a \rightarrow e$ 3,6, Trans - 8. a premise - 9. e 7,8.M.P. ## Proof graph (DAG) Roots: premises ## Proofs ■ The problem: ⊢ is a relation defined by syntactic transformations of the underlying proof system. - For a given proof system \mathcal{H} , - does ⊢ conclude "correct" conclusions from premises? - Can we conclude all true statements with \mathcal{H} ? - Correct with respect to what ? - With respect to the semantic definition of the logic. In the case of propositional logic truth tables gives us this. # 4 #### Soundness and completeness - Let \mathcal{H} be a proof system - *Soundness* of \mathcal{H} : if $\vdash_{\mathcal{H}} \varphi$ then $\models \varphi$ - *Completeness* of \mathcal{H} : if $\vDash \varphi$ then $\vdash_{\mathcal{H}} \varphi$ - How to prove soundness and completeness ? #### Soundness and completeness of procedures The definitions so far referred to proof systems What does soundness and completeness mean for general decision algorithms? #### Soundness and Completeness - Definition [soundness]: A procedure for the decision problem is sound if - when it returns "Valid"... - ... the input formula is valid. - Definition [completeness]: A procedure for the decision problem is complete if - it always terminates, and - it returns "Valid" when the input formula is valid. Definition [decidability] A logic is decidable if there is a sound and complete algorithm that decides if a well-formed expression in this logic is valid. #### Soundness and Completeness - Soundness: "when I say that it rains, it rains" - Completeness: "If asked, I always reply (in a finite time...). When it rains, I say that it rains" #### Soundness and Completeness (cont'd) Algorithm #1: for checking if it rains outside: "stand right outside the door and say 'it rains'" - It is not sound because you might say it rains when it doesn't. - But it is complete: you always get an answer in a finite time, and when it rains you say it rains. #### Soundness and Completeness (cont'd) Algorithm #2 for checking if it rains outside: "stand right outside the door and say 'it rains' if and only if you feel the rain" - It is sound because you say it rains only if it actually rains. - It is incomplete because you do not say anything if it doesn't rain (we do not know whether it doesn't rain, or it takes the person too long to answer...). #### Soundness and Completeness (cont'd) Algorithm #2 for checking if it rains outside: "stand right outside the door and say 'it rains' if and only if you feel the rain, after a second" - It is sound because you say it rains only if it actually rains. - It is complete. • Now let's go back to proof systems... #### Example: Hilbert axiom system (\mathcal{H}) ■ Let \mathcal{H} be (M.P) + the following axiom schemas: $$\begin{array}{c} \hline A \rightarrow (B \rightarrow A) \\ \hline ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \\ \hline (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B) \\ \hline (H3) \end{array}$$ $m{\mathcal{H}}$ is sound and complete #### Soundness and completeness ■ To prove soundness of \mathcal{H} , prove the soundness of its axioms and inference rules (easy with truth-tables). For example: | A | В | $A \rightarrow (B \rightarrow A)$ | |---|---|-----------------------------------| | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 1 | ■ Completeness – harder, but possible. #### The resolution inference system ■ The resolution inference rule for CNF: $$\frac{(l \vee l_1 \vee ... \vee l_n) \quad (\neg l \vee l'_1 \vee ... \vee l'_n)}{(l_1 \vee ... \vee l_n \vee l'_1 \vee ... \vee l'_n)} \quad (\text{Resolution})$$ **Example:** $$\frac{(a \lor b) \quad (\neg a \lor c)}{(b \lor c)}$$ ### Proof by resolution • Let $\varphi = (1\ 3) \land (-1\ 2\ 5) \land (-1\ 4) \land (-1\ -4) \land (1\ -2)$ • We'll try to prove $\varphi \rightarrow (3.5)$ - Resolution is a sound and complete inference system for CNF - If the input formula is unsatisfiable, there exists a proof of the empty clause ## Example • Let $\varphi = (1\ 3) \land (-1\ 2) \land (-1\ 4) \land (-1\ -4) \land (1\ -2) \land (-3)$