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A brief introduction to Logic – part I 
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A Brief Introduction to Logic - Outline 

 Brief historical notes on logic 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Modeling with Propositional logic 

 Normal forms 

 Deductive proofs and resolution 
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Historical view 

 Philosophical Logic  

 500 BC to 19th Century 

 Symbolic Logic 

 Mid to late 19th Century 

 Mathematical Logic 

 Late 19th to mid 20th Century 

 Logic in Computer Science 
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Philosophical Logic 

 500 B.C – 19th Century 

 Logic dealt with arguments in the natural language 

used by humans. 

 Example 

 All men are mortal. 

 Socrates is a man 

 Therefore, Socrates is mortal. 
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Philosophical Logic 

 

 Natural languages are very ambiguous. 

 Eric does not believe that Mary can pass any test. 

 ...does not believe that she can pass some test, or 

 ...does not believe that she can pass all  tests  

 I only borrowed your car. 

 And not ‘borrowed and used’, or 

 And not ‘car and coat’ 

 Tom hates Jim and he likes Mary. 

 Tom likes Mary, or 

 Jim likes Mary 

  

 It led to many paradoxes. 

 “This sentence is a lie.” (The Liar’s Paradox) 
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Sophism  
(From Wikipedia) 

 ... Sophism generally refers to a particularly 

confusing, illogical and/or insincere argument 

used by someone to make a point, or, perhaps, 

not to make a point.  

 Sophistry refers to [...] rhetoric that is designed 

to appeal to the listener on grounds other than 

the strict logical cogency of the statements 

being made. 
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The Sophist’s Paradox 

 A Sophist is sued for his tuition by the school that 
educated him. He argues that he must win, since, if 
he loses, the school didn’t educate him well enough, 
and doesn’t deserve the money.  

 

 The school argues that he must lose, since, if he wins, 
he was educated well enough, and therefore should 
pay for it. 
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Logic in Computer Science 

 Logic has a profound impact on computer-science. 

Some examples:  

 Propositional logic – the foundation of computers and 

circuitry  

 Databases – query languages 

 Programming languages (e.g. prolog) 

 Design Validation and verification  

 AI (e.g. inference systems) 

 ... 
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Logic in Computer Science 

 Propositional Logic 

 First Order Logic 

 Higher Order Logic 

 Temporal Logic 

 ... 

 ... 
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Propositional logic 

 A proposition – a sentence that can be either true or 

false.  

 Propositions:  

 x is greater than y 

 Noam wrote this letter 
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Propositional logic: Syntax 

 The symbols of the language: 

 Propositional symbols (Prop): A, B, C,… 

 Connectives:  

   and  

   or  

   not  

   implies  

   equivalent to  

 ©  xor (different than) 

 , >  False, True 

 Parenthesis:(, ). 

 Q1: how many different binary symbols can we define ?  

 Q2: what is the minimal number of such symbols? 
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Formulas 

 Grammar of well-formed propositional formulas 

 

 Formula := prop | (Formula) | (Formula o Formula). 

 

 ... where prop 2 Prop and o is one of the binary relations 
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Formulas  

 Examples of well-formed formulas: 

 (A) 

 ((A))   

 (A  (B  C)) 

 (A (B C)) 

 

 Correct expressions of Propositional Logic are full of 

unnecessary parenthesis. 
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Formulas  

 Abbreviations. We write  

A o B o C o …  

 in place of  

(A o (B o (C o  …))) 

 Thus, we write  

A  B  C,      ABC, … 

 in place of  

(A  (B  C)),      (A (B C)) 
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Formulas  

 We omit parenthesis whenever we may restore them 

through operator precedence: 

  binds more strictly than , , and ,  bind more 

strictly than , . 

 Thus, we write: 

A  for  ((A)),  

A B   for  ((A ) B)  

A B C   for  ((AB)  C), … 
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 Propositional Logic: Semantics 

 Truth tables define the semantics (=meaning) of the 

operators 

 Convention: 0 = false, 1 = true 

 

 

 

 

 

 

p ! q p Ç q p Æ q q p 

1 0 0 0 0 

1 1 0 1 0 

0 1 0 0 1 

1 1 1 1 1 
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 Propositional Logic: Semantics 

 Truth tables define the semantics (=meaning) of the 

operators 

 

 

 

 

 

 

p © q p $ q :p q p 

0 1 1 0 0 

1 0 1 1 0 

1 0 0 0 1 

0 1 0 1 1 
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Back to Q1 

 Q1: How many binary operators can we define that 

have different semantic definition ?  

 A: 16 

 

 

 



19 

Assignments 

 Definition: A truth-values assignment, , is an 

element of 2Prop (i.e.,   2Prop).  

 In other words, ® is a subset of the variables that are 

assigned true.   

 Equivalently, we can see ® as a mapping from 

variables to truth values:  

 : Prop  {0,1}  

 Example: ®: {A  0, B  1,...} 
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Satisfaction relation (²): intuition 

 An assignment can either satisfy or not satisfy a 

given formula. 

 

  ² φ means 

  satisfies φ or 

 φ holds at  or 

  is a model of φ 

 We will first see an example. 

 Then we will define these notions formally. 
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Example 

 Let Á = (A Ç (B → C)) 

 Let ® = {A  0, B  0, C  1} 

 Q: Does ® satisfy Á?  

 (in symbols: does it hold that ® ² Á ? ) 

 

 

 A: (0 Ç (0 → 1)) = (0 Ç 1) = 1 

 Hence, ® ² Á. 

 

 Let us now formalize an evaluation process. 
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The satisfaction relation (²): formalities 

  ² is a relation:   ² µ (2Prop x Formula) 

 Examples:  

 ({a}, a Ç b)  // the assignment ® = {a} satisfies a Ç b 

 ({a,b}, a Æ b) 

 

 Alternatively: ² µ ({0,1}Prop £ Formula) 

 Examples:  

 (01, a Ç b)  // the assignment ® = {a  0, b  1} satisfies  a Ç b 

 (11, a Æ b) 
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The satisfaction relation (²): formalities 

 ² is defined recursively: 

  ² p if  (p) = true 

  ² φ if  2 φ. 

  ² φ1  φ2 if  ² φ1 and  ² φ2  

  ² φ1  φ2 if  ² φ1 or  ² φ2  

  ² φ
1
  φ2 if  ² φ1 implies  ² φ2 

  ² φ
1
  φ2 if  ² φ1 iff  ² φ2 
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From definition to an evaluation algorithm 

 Truth Evaluation Problem 

 Given φ  Formula and    2AP(φ),  does  ² φ ? 

 

Eval(φ, ){ 

If φ  A, return (A). 

If φ  (φ1) return Eval(φ1, )) 

If φ  (φ1 o φ2)  

return Eval(φ1, ) o Eval(φ2, ) 

} 

 

 Eval uses polynomial time and space. 
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It doesn’t give us more than what we already know...  

 Recall our example 

 Let Á = (A Ç (B → C)) 

 Let ® = {A  0, B  0, C  1} 

 

 Eval(Á,®) = Eval(A,) Ç Eval(B → C,) =  

0 Ç Eval(B,) → Eval(C,) =  

0 Ç (0 → 1) = 0 Ç 1 = 1 

 

 Hence, ® ² Á. 
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We can now extend the truth table to formulas  

p Ç :q (p Æ :p) (p → (q → p)) q p 

1 0 1 0 0 

0 0 1 1 0 

1 0 1 0 1 

1 0 1 1 1 



27 

0 1 1 1 

1 0 1 1 

1 1 0 1 

1 0 0 1 

1 

0 

1 

0 

x3 

1 1 0 

1 1 0 

1 0 0 

1 0 0 

x1 → (x2 → :x3) x2 x1 

We can now extend the truth table to formulas  
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Set of assignments 

 Intuition: a formula specifies a set of truth 

assignments. 

 Function models: Formula  22Prop  

(a formula  set of satisfying assignments) 

 Recursive definition:  

 models(A) = { |(A) = 1}, A  Prop 

 models(φ1) = 2Prop – models(φ1) 

 models(φ1φ2) = models(φ1)  models(φ2) 

 models(φ1φ2) = models(φ1)  models(φ2) 

 models(φ1φ2) = (2Prop – models(φ1))  models(φ2) 
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Example 

 models (A Ç B) = {{10},{01},{11}} 

 

 This is compatible with the recursive definition:  

 

models(A Ç B) =  

  models(A) [ models (B) =  

    {{10},{11}} [ {{01},{11}} =  

      {{10},{01},{11}} 
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Theorem 

 Let φ  Formula and   2Prop, then the following 

statements are equivalent: 

1.  ² φ 

2.   models(φ) 
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Only the projected assignment matters... 

 AP(φ) – the Atomic Propositions in φ.  

 Clearly AP(φ) µ Prop.  

 Let 1, 2  2Prop, φ  Formula. 

 Lemma:  if 1|AP(φ) = 2|AP(φ) , then  

                             

  1² φ iff  2 ² φ 

 

   Corollary:  ² φ iff |AP(φ) ² φ 

 We will assume, for simplicity, that Prop = AP(φ). 

Projection 
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Extension of ² to sets of assignments 

 Let φ 2 Formula 

 

 Let T be a set of assignments, i.e., T  22Prop
 

 

 Definition.  

 
 T ² φ if T  models(φ) 

 

 i.e., ²  22Prop 
£ Formula 
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Extension of ² to formulas 

  ²   2Formula £ 2Formula 

 Definition. Let  1, 2 be prop. formulas.   

  
 1 ² 2  

          iff models(1)  models(2)  

          iff for all   2Prop 

                             if  ² 1 then  ² 2  

Examples: 

x1 Æ x2 ² x1 Ç x2 

x1 Æ x2 ² x2 Ç x3 
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Semantic Classification of formulas 

 A formula φ is called valid if models(φ) = 2Prop.  

(also called a tautology). 

 

 A formula φ is called satisfiable if models(φ)  ;.  

 

 A formula φ is called unsatisfiable if models(φ) = ;.  

(also called a contradiction). 

unsatisfiable 
satisfiable 

valid 
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Validity, satisfiability... in truth tables  

p Ç :q (p Æ :p) (p → (q → q)) q p 

1 0 1 0 0 

0 0 1 1 0 

1 0 1 0 1 

1 0 1 1 1 
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Characteristics of valid/sat. formulas...  

 Lemma 

 A formula φ is valid iff φ is unsatisfiable 

 φ is satisfiable iff φ is not valid 

 

Satisfiability  
checker 

Is  valid?  

yes  

no  

? 
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Look what we can do now... 

 

 We can write: 

 

  ² Á  when Á is valid 

 

  2 Á   when Á is not valid 

 

  2 :Á   when Á is satisfiable 

 

  ² :Á   when Á is unsatisfiable 

 



38 

Examples 

 (x1 Æ x2) →  (x1 Ç x2)  is 

 (x1 Ç x2) → x1   is 

 (x1 Æ x2) Æ :x1   is  

valid 

satisfiable 

unsatisfiable 
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Time for equivalences 

 Here are some valid formulas:  

  ² A Æ 1 $ A 

  ² A Æ 0 $ 0 

  ² ::A $ A // The double-negation rule 

  ² A Æ (B Ç C) $ (A Æ B) Ç (A Æ C) 

 

 Some more (De-Morgan rules):  

  ² :(A Æ B) $ (:A Ç :B) 

  ² :(A Ç B) $ (:A Æ :B) 
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A minimal set of binary operators 

 Recall the question: what is the minimal set of 

operators necessary? 

 A: Through such equivalences all Boolean operators 

can be written with a single operator (NAND). 

 Indeed, typically industrial circuits only use one type of 

logical gate 

 

 We’ll see how two are enough: : and Æ 

 Or:   ² (A Ç B) $ :(:A Æ :B) 

 Implies:   ² (A → B) $ (:A Ç B) 

 Equivalence: ² (A $ B) $ (A → B) Æ (B → A) 

 ... 



41 

The decision problem of formulas 

 The decision problem: 

 

Given a propositional formula Á, is Á satisfiable ?  

 

 

 

 An algorithm that always terminates with a correct 

answer to this problem is called a decision 

procedure for propositional logic.  
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A Brief Introduction to Logic - Outline 

 Brief historical notes on logic 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Modeling with Propositional logic 

 Normal forms 

 Deductive proofs and resolution 
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Before we solve this problem...  

 Q: Suppose we can solve the satisfiability problem... 

how can this help us? 

 

 A: There are numerous problems in the industry that 

are solved via the satisfiability problem of 

propositional logic 

 Logistics... 

 Planning...  

 Electronic Design Automation industry... 

 Cryptography... 

 ... (every NP-P problem...) 
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Example 2: placement of wedding guests 

 Three chairs in a row: 1,2,3 

 We need to place Aunt, Sister and Father. 

 Constraints:  

 Aunt doesn’t want to sit near Father 

 Aunt doesn’t want to sit in the left chair 

 Sister doesn’t want to sit to the right of Father 

 

 Q: Can we satisfy these constraints?  
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Example 2 (cont’d) 

 Denote: Aunt = 1, Sister = 2, Father = 3 

 Introduce a propositional variable for each pair 

(person, place). 

 xij = person i is sited in place j, for 1 · i,j · 3 

 Constraints:  

 Aunt doesn’t want to sit near Father:   

((x1,1 Ç x1,3) → :x3,2) Æ (x1,2 → (:x3,1 Æ :x3,3)) 

 Aunt doesn’t want to sit in the left chair 

:x1,1 

 Sister doesn’t want to sit to the right of Father 

x3,1 → :x2,2 Æ x3,2 → :x2,3 
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Example 2 (cont’d) 

 More constraints:  

 Each person is placed:  

(x1,1 Ç x1,2 Ç x1,3) Æ  

(x2,1 Ç x2,2 Ç x2,3) Æ  

(x3,1 Ç x3,2 Ç x3,3) 

 Or, more concisely:  

 

 Not more than one person per chair: 

 

 

 

 Overall 9 variables, 23 conjoined constraints. 
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Example 3: assignment of frequencies 

 n radio stations 

 For each assign one of k transmission frequencies, k < n. 

 E -- set of pairs of stations, that are too close to have the 

same frequency. 

 

 Q: which graph problem does this remind you of ?  
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Example 3 (cont’d) 

 xi,j – station i is assigned frequency j, for 1 · i · n, 

1 · j · k. 

 Every station is assigned at least one frequency: 

 

 

 Every station is assigned not more than one frequency: 

 

 

 Close stations are not assigned the same frequency.  

For each (i,j) 2 E,  
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Two classes of algorithms for validity 

 Q: Is φ satisfiable (/:φ is valid) ?  

 Complexity: NP-Complete (the first-ever! – Cook’s 

theorem) 

 

 Two classes of algorithms for finding out: 

1. Enumeration of possible solutions (Truth tables etc). 

2. Deduction 

 

 More generally (beyond propositional logic):  

 Enumeration is possible only in some logics. 

 Deduction cannot necessarily be fully automated. 
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The satisfiability problem: enumeration 

 Given a formula φ, is φ satisfiable? 

 

Boolean SAT(φ) { 

 B:=false 

 for all   2AP(φ)  

 B = B  Eval(φ,) 

 end 

 return B 

} 

 

 There must be a better way to do that in practice. 
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A Brief Introduction to Logic - Outline 

 Brief historical notes on logic 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Modeling with Propositional logic 

 Normal forms 

 Deductive proofs and resolution 
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Definitions… 

 Definition: A literal is either an atom or a negation of 

an atom. 

 Let  = :(A Ç :B). Then: 

 Atoms: AP() = {A,B} 

 Literals: lit() = {A, :B} 

 

 Equivalent formulas can have different literals 

   = :(A Ç :B) = :A Æ B 

 Now lit() = {:A, B} 
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Definitions… 

 Definition: a term is a conjunction of literals 

 Example: (A Æ :B Æ C)  

 

 Definition: a clause is a disjunction of literals 

 Example: (A Ç :B Ç C) 

 

 



56 

Negation Normal Form (NNF) 

 Definition: A formula is said to be in Negation 

Normal Form (NNF) if it only contains :, Æ and Ç 

connectives and only atoms can be negated. 

 

 Examples: 

  1 = :(A Ç :B) is not in NNF 

  2 = :A Æ B  is in NNF 
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Converting to NNF 

 Every formula can be converted to NNF in linear 

time: 

 Eliminate all connectives other than Æ, Ç, : 

 Use De Morgan and double-negation rules to push 

negations to the right 

 Example:  = :(A ! :B) 

 Eliminate ‘!’:  = :(:A Ç :B) 

 Push negation using De Morgan:  = (::A Æ ::B) 

 Use Double negation rule:  = (A Æ B) 
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Disjunctive Normal Form (DNF) 

 Definition: A formula is said to be in Disjunctive 

Normal Form (DNF) if it is a disjunction of terms. 

 In other words, it is a formula of the form  

 

 

where li,j is the j-th literal in the i-th term. 

 

 Examples 

   = (A Æ :B Æ C) Ç (:A Æ D) Ç (B)  is in DNF 

 

 DNF is a special case of NNF 
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Converting to DNF 

 Every formula can be converted to DNF in 

exponential time and space: 

 Convert to NNF 

 Distribute disjunctions following the rule:  
² A Æ (B Ç C) $ ((A Æ B) Ç (A Æ C)) 

 Example: 

   = (A Ç B) Æ (:C Ç D) =   

((A Ç B) Æ (:C)) Ç ((A Ç B) Æ D) =  

(A Æ :C) Ç (B Æ :C) Ç (A Æ D) Ç (B Æ D) 

 Q: how many clauses would the DNF have had we started 

from a conjunction of n clauses ? 
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Satisfiability of DNF 

 Is the following DNF formula satisfiable?  

(x1 Æ x2 Æ :x1) Ç (x2 Æ x1) Ç (x2 Æ :x3 Æ x3) 

 

 What is the complexity of satisfiability of DNF 

formulas? 
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Conjunctive Normal Form (CNF) 

 Definition: A formula is said to be in Conjunctive 

Normal Form (CNF) if it is a conjunction of clauses. 

 In other words, it is a formula of the form  

 

 

where li,j is the j-th literal in the i-th term. 

 

 Examples 

   = (A Ç :B Ç C) Æ  (:A Ç D) Æ (B)  is in CNF 

 

 CNF is a special case of NNF 
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Converting to CNF 

 Every formula can be converted to CNF: 

 

 in exponential time and space with the same set of atoms 

 

 in linear time and space if new variables are added.  

 In this case the original and converted formulas are “equi-

satisfiable”.  

 This technique is called Tseitin’s encoding.  
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Converting to CNF: the exponential way 

CNF() { 

case 

  is a literal: return  

  is 1 Æ 2: return CNF(1) Æ CNF(2) 

  is 1 Ç 2: return Dist(CNF(1),CNF(2)) 

} 

 

Dist(1,2) { 

case 

 1 is 11 Æ 12: return Dist(11,2) Æ Dist(12,2) 

2 is 21 Æ 22: return Dist(1,21) Æ Dist(1,22) 

else: return 1 Ç 2 
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Converting to CNF: the exponential way 

 Consider the formula  

 = (x1 Æ y1) Ç (x2 Æ y2)  

 CNF()=  

(x1 Ç x2) Æ  

(x1 Ç y2) Æ  

(y1 Ç x2) Æ  

(y1 Ç y2)   

 

 Now consider: n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn) 

 Q: How many clauses CNF() returns ?  

 A: 2n 
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Converting to CNF: Tseitin’s encoding 

 Consider the formula  = (A ! (B Æ C)) 

 The parse tree:  

 

 

 

 

 

 Associate a new auxiliary variable with each gate. 

 Add constraints that define these new variables. 

 Finally, enforce the root node. 

A Æ 

B C 

! a1 

a2 
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Converting to CNF: Tseitin’s encoding 

 Need to satisfy:  

(a1 $ (A ! a2)) Æ 

(a2 $ (B Æ C)) Æ 

(a1) 

 

 

 

 

 Each such constraint has a CNF representation with 3 

or 4 clauses. 

A Æ 

B C 

! a1 

a2 
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Converting to CNF: Tseitin’s encoding 

 Need to satisfy:  

(a1 $ (A ! a2)) Æ 

(a2 $ (B Æ C)) Æ 

(a1) 

 

 First:  (a1 Ç A) Æ (a1 Ç :a2) Æ (:a1 Ç :A Ç a2) 

 Second: (:a2 Ç B) Æ (:a2 Ç C) Æ (a2 Ç :B Ç :C) 
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Converting to CNF: Tseitin’s encoding 

 Let’s go back to  
n = (x1 Æ y1) Ç (x2 Æ y2) Ç  Ç (xn Æ yn) 

 With Tseitin’s encoding we need:  

 n auxiliary variables a1,…,an.  

 Each adds 3 constraints. 

 Top clause: (a1 Ç  Ç an) 

 

 Hence, we have  

 3n + 1 clauses, instead of 2n. 

 3n variables rather than 2n. 
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What now? 

 Time to solve the decision problem for propositional 

logic. 

 

 The only algorithm we saw so far was building truth tables. 
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Two classes of algorithms for validity 

 Q: Is φ valid ?  

 Equivalently: is :φ satisfiable?  

 Two classes of algorithm for finding out: 

1. Enumeration of possible solutions (Truth tables etc). 

2. Deduction 

 

 In general (beyond propositional logic):  

 Enumeration is possible only in some theories. 

 Deduction typically cannot be fully automated. 
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The satisfiability Problem: enumeration 

 Given a formula φ, is φ satisfiable? 

 

Boolean SAT(φ) { 

 B:=false 

 for all   2AP(φ)  

 B = B  Eval(φ,) 

 end 

 return B 

} 

 NP-Complete (the first-ever! – Cook’s theorem) 
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A Brief Introduction to Logic - Outline 

 Brief historical notes on logic 

 Propositional Logic :Syntax  

 Propositional Logic :Semantics 

 Satisfiability and validity 

 Modeling with Propositional logic 

 Normal forms 

 Deductive proofs and resolution 
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Deduction requires axioms and Inference rules 

 Inference rules:  

 

  Antecedents   

  Consequent 

 Examples:  

  

A ! B B ! C    

        A ! C       

 A ! B A 

  B 

(rule-name) 

(trans) 

(M.P.) 
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Axioms 

 Axioms are inference rules with no antecedents, e.g., 

 

 

 

 We can turn an inference rule into an axiom if we 
have ‘→’ in the logic.  

 

 So the difference between them is not sharp. 

 

(H1) 
A ! (B ! A)    
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Proofs 

 A proof uses a given set of inference rules and axioms. 

 This is called the proof system. 

 Let H be a proof system. 

 

  `H φ means: there is a proof of φ in system H whose 

premises are included  in  

 

 `H is called the provability relation. 
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Example 

 Let H be the proof system comprised of the rules 

Trans and M.P. that we saw earlier. 

 

 Does the following relation holds? 

a ! b,b ! c,  c ! d , d ! e, a  `H e  
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Deductive proof: example 

1. a ! b premise 

2. b ! c premise 

3. a ! c 1,2,Trans 

4. c ! d premise 

5. d ! e premise 

6. c ! e 4,5, Trans 

7. a ! e 3,6, Trans 

8. a  premise 

9. e  7,8.M.P. 

a ! b, b ! c, c ! d, d ! e, a  `H e  



78 

Proof graph (DAG) 

a ! b   b ! c    c ! d   d ! e 

a ! c c ! e 

a ! e 

a 

e 

(trans) 

(trans) 

(trans) 

(M.P.) 

Roots: premises 
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Proofs 

 The problem: ` is a relation defined by syntactic 

transformations of the underlying proof system. 

 

 For a given proof system H,  

 does ` conclude “correct” conclusions from premises ?  

 Can we conclude all true statements with H? 

 

 Correct with respect to what ?  

 With respect to the semantic definition of the logic. In the 

case of propositional logic truth tables gives us this. 
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Soundness and completeness 

 

 Let H be a proof system 

 

 Soundness of H:  if `H φ then  ² φ 

 

 Completeness of H :  if ² φ then `H φ 

 

 How to prove soundness and completeness ?  
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Soundness and completeness of procedures 

 The definitions so far referred to proof systems 

 

 What does soundness and completeness mean for 

general decision algorithms ?  
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Soundness and Completeness 

 Definition [soundness]: A procedure for the decision 

problem is sound if  

 when it returns “Valid”... 

 ... the input formula is valid.  

 

 Definition [completeness]: A procedure for the 

decision problem is complete if 

 it always terminates, and 

 it returns “Valid” when the input formula is valid. 
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Decidability 

 Definition [decidability]  

A logic is decidable if there is a sound and complete 

algorithm that decides if a well-formed expression in 

this logic is valid. 
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Soundness and Completeness 

 Soundness: “when I say that it rains, it rains” 

 Completeness: “If asked, I always reply (in a finite 

time…). When it rains, I say that it rains” 
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Soundness and Completeness (cont’d) 

 Algorithm #1: for checking if it rains outside: 

“stand right outside the door and say ‘it rains’”  

 

 

 

 It is not sound because you might say it rains when it doesn’t. 

 But it is complete: you always get an answer in a finite time, 

and when it rains you say it rains. 
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Soundness and Completeness (cont’d) 

 Algorithm #2 for checking if it rains outside: 

“stand right outside the door and say ‘it rains’ if and only if 

you feel the rain” 

 

 

 It is sound because you say it rains only if it actually rains. 

 It is incomplete because you do not say anything if it doesn’t 

rain (we do not know whether it doesn’t rain, or it takes the 

person too long to answer…). 



87 

Soundness and Completeness (cont’d) 

 Algorithm #2 for checking if it rains outside: 

“stand right outside the door and say ‘it rains’ if and only if 

you feel the rain, after a second” 

 

 

 It is sound because you say it rains only if it actually rains. 

 It is complete. 
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 Now let’s go back to proof systems...  
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Example: Hilbert axiom system (H) 

 Let H be (M.P) + the following axiom schemas:     
 

(H1) 
A ! (B ! A)    

(H2) 
((A !(B ! C)) !((A! B)!(A! C)) 

(H3) 
(:B ! :A) ! (A ! B) 

 H is sound and complete 
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Soundness and completeness 

 To prove soundness of H, prove the soundness of its axioms 

and inference rules (easy with truth-tables). For example: 

 

 

 

 

 

 

 

 Completeness – harder, but possible.  

A ! (B ! A) B A 

1 0 0 

1 1 0 

1 0 1 

1 1 1 
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The resolution inference system 

 The resolution inference rule for CNF: 

 

 

 

 

 

 

 Example:  

 

 



92 

Proof by resolution 

 Let  = (1 3) Æ (-1 2 5) Æ (-1 4) Æ (-1 -4) Æ (1 -2) 

 

 We’ll try to prove  → (3 5) 

(1 3) (-1 2 5) 

(2 3 5) (1 -2) 

(1 3 5) 

(-1 4) (-1 -4) 

(-1) 

(3 5) 
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Resolution 

 Resolution is a sound and complete inference system 

for CNF 

 If the input formula is unsatisfiable, there exists a 

proof of the empty clause 
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Example 

 Let  = (1 3) Æ (-1 2) Æ (-1 4) Æ (-1 -4) Æ (1 -2) Æ (-3) 

 

(1 3) (-1 2) 

(2 3) (1 -2) 

(1 3) 

(-1 4) (-1 -4) 

(-1) 

(3) (-3) 

() 


